Skip to main content Skip to secondary navigation
John Brauman
Main content start

John Brauman

J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus
John Brauman’s research has advanced the understanding of the factors that determine the rates and products of chemical reactions. His primary areas of effort have involved the spectroscopy, photochemistry, reaction dynamics, and reaction mechanisms of gas-phase ions.

John I. Brauman was born in Pittsburgh, PA in 1937. He attended the Massachusetts Institute of Technology (S.B. 1959) and the University of California at Berkeley (Ph.D. 1963). Following a National Science Foundation Postdoctoral Fellowship at the University of California, Los Angeles, he accepted a position at Stanford University where he is now J. G. Jackson - C. J. Wood Professor of Chemistry Emeritus, and serves as Associate Dean of Research. He was previously Department Chair and Associate Dean for Natural Sciences.

Brauman’s work has been recognized in the National Medal of Science, National Academy of Sciences Award in Chemical Sciences, Linus Pauling Medal, Dean's Award for Distinguished Teaching from Stanford University, among many other honors. He is a member of the National Academy of Sciences, American Academy of Arts and Sciences, American Philosophical Society, a Fellow of the American Association for the Advancement of Science, Fellow of the American Chemical Society, and Honorary Fellow of the California Academy of Sciences. He received the 2017 ACS Parsons Award in recognition of his service to public science communication and policy, which includes roles as Deputy Editor for Physical Sciences and Editorial Board Chair for Science magazine, and Home Secretary of the National Academy of Sciences.

Research in the Brauman Group centered on structure and reactivity. Brauman has studied ionic reactions in the gas phase, including acid-base chemistry, the mechanisms of proton transfers, nucleophilic displacement, and addition-elimination reactions. His work has explored the shape of the potential surfaces and the dynamics of reactions on these surfaces. He has made contributions to the field of electron photodetachment spectroscopy of negative ions, measurements of electron affinities, the study of dipole-supported electronic states, and multiple photon infrared activation of ions. He has also studied mechanisms of solution and gas phase organic reactions as well as organometallic reactions and the behavior of biomimetic organometallic species.

Education

SB, Massachusetts Institute of Technology, Chemistry (1959)
PhD, University of California at Berkeley, Chemistry (1963)
NSF Postdoctoral Fellow, University of California at Los Angeles, Chemistry (1963)